Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Uk Lee, ${ }^{\text {a }}{ }^{*}$ Yeon-Hwa Jung, ${ }^{\text {a }}$ Hea-Chung Joo ${ }^{\text {a }}$ and Ki -Min Park ${ }^{\text {b }}$

${ }^{\text {a D Department of Chemistry, Pukyong National }}$ University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea, and ${ }^{\mathbf{b}}$ Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
H -atom completeness 93\%
Disorder in solvent or counterion
R factor $=0.042$
$w R$ factor $=0.108$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A new decavanadate with a tricobalt(II) cation and 18-crown-6, tris\{hexaaquacobalt(II)\} decavanadate bis(18-crown-6) decahydrate

The title compound, $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot(18 \text {-Crown-6) })_{2}$-$10 \mathrm{H}_{2} \mathrm{O}$, was obtained by mixing 18-crown-6 with $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The centrosymmetric $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanion forms a three-dimensional network via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with water molecules. The V...V distances are in the range 3.068 (1)-3.266 (1) \AA; the four types of $\mathrm{V}-\mathrm{O}$ bond lengths are in the ranges 1.599 (3)-1.611 (2) ($\mathrm{O} t$), $1.923(2)-2.030(2) \quad(\mathrm{O} c), \quad 1.668(2)-2.110(3) \quad(\mathrm{O} b) \quad$ and $2.062(2)-2.365(2) \AA(\mathrm{O} h)$. The number of Co^{2+} cations in the structure could be controlled by the neutral, bulky 18-crown-6 ether. All of the six O atoms in the 18-crown-6 form hydrogen bonds with water molecules.

Comment

Bulky adducts of crown-ethers are sometimes found in polyoxometalates e.g. (18-crown-6.K) $2 \cdot \mathrm{~K}\left[\mathrm{H}_{6} \mathrm{CoMo}_{6} \mathrm{O}_{24}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Nagano \& Lee, 1990), $\left[\mathrm{Na}(\text { dibenzo-18-crown-6) }(\mathrm{MeCN})]_{3}-\right.$ [$\mathrm{PMo}_{12} \mathrm{O}_{40}$] (You et al., 2001), (18-crown-6) $\left[\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}\right]$-$22 \mathrm{H}_{2} \mathrm{O}$ (You, Wang, He et al., 2000), $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}$ (benzo-15-crown-5) $6 \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (You, Wang, Zhang et al., 2000), and $\left[\left(\mathrm{H}_{3} \mathrm{O}\right)^{+} \text {(dibenzo-18-crown-6) }\right]_{2}\left[\mathrm{HPMo}_{12} \mathrm{O}_{40}\right] \cdot$ (dibenzo-18-crown-6) $\cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{You}$ et al., 2002).

(I)

Since the decavanadate anion, $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$, was reported by Evans (1966), the crystal structures of many of its salts have been characterized e.g. alkali metals (Durif et al., 1980; Rigotti et al., 1987), alkaline earth metals (Swallow et al., 1966; Nieto et al., 1993; Kamenar et al., 1996; Strukan et al., 1999), lanthanides (Saf'yanov \& Belov, 1976; Saf'yanov et al., 1978; Rivero et al., 1984, 1985; Naruke et al., 1999; Peng et al., 2002), ammonium (Eglmeier et al., 1993) and double salts (Avtamonova et al., 1990; Crans et al., 1994; Fratzky et al., 2000). The double salts of transition elements and alkali metals or ammonium ions e.g. $\mathrm{K}_{2}\left[\mathrm{Zn}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Evans,

Received 30 April 2003 Accepted 28 May 2003 Online 10 June 2003

Figure 1
Hydrogen-bonding interactions between the 18-crown-6 and water molecules. Probable $\mathrm{O}_{\text {water }} \cdots \mathrm{O}$ hydrogen bonds are shown as broken blue lines. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Figure 2
The polyanion structure in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
1966), $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2}\left[\mathrm{Ni}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Higami et al., 2002), $\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$ (Nowogrocki et al., 1997), $\mathrm{Na}_{4}\left[\mathrm{Ni}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 17 \mathrm{H}_{2} \mathrm{O}\right.$ (Sun et al., 2002) and $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Lee et al., 2003) have also been reported.

A structure of an $\left[M^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$ (where M is a transition element) salt has not yet been reported. We were able to prepare this type of salt by introducing 18 -crown- 6 into a decavanadate crystal system. The number of Co^{2+} cations in the decavanadate could be controlled by the neutral bulky 18-crown-6 ether. We report here the structure of $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot(18 \text {-crown- } 6)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, (I), which was prepared by mixing 18 -crown- 6 with $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}$ $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Lee et al., 2003). The role of the 18-crown-6 appears to be important in the crystal packing of (I).

Figure 3
The crystal packing of (I) in the unit cell, shown as polyhedral model. The purple octahedron is $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$. Probable $\mathrm{O}_{\text {water }} \cdots \mathrm{O}$ hydrogen bonds are shown as red broken lines. [Symmetry code: (i) $-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x, y, 1+z$.]

Fig. 1 shows the hydrogen-bonding interactions of 18-crown-6 with the water molecules in (I). The $\mathrm{O}_{\text {water }}-$ $\mathrm{H} \cdots \mathrm{O}_{\text {crown ether }}$ hydrogen-bonding interactions with five water molecules involve all of the six O atoms in the 18 -crown- 6 ether. These distances are in the range 2.764 (4)-3.002 (4) A. Because of the asymmetric hydrogen bonding, the sixmembered O-atom ring in the 18-crown-6 does not form a planar hexagon. The dihedral angles formed by the
 and $\mathrm{O} 18 \cdots \mathrm{O} 19 \cdots \mathrm{O} 20$ triangles are $60.2(1)$ and $21.1(2)^{\circ}$, respectively, and the ring is in a boat conformation.

The configuration of the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ in (I) is shown in Fig. 2. The centrosymmetric polyanion consists of five independent $\left(\mathrm{VO}_{6}\right)$ octahedra, sharing edges, and has approximate $D_{2 h}$ symmetry. The labeling of the O atoms in the polyanion is the same as the labeling in the previous structure (Lee et al., 2003). The V...V distances are in the range 3.068 (1)-3.266 (1) A; the four types of $\mathrm{V}-\mathrm{O}$ bond lengths are in the ranges 1.599 (3)-1.611 (2) (Ot), 1.923 (2)-2.030 (2) (Oc), 1.668 (2)$2.110(3)(\mathrm{O} b)$ and $2.062(2)-2.365(2) \AA(\mathrm{O} h)$. The bond lengths and angles of the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ show a similar trend to those found in the literature. The framework of $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Fig. 3 shows the crystal packing in (I), with the hydrogenbonding interactions. The $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanion is surrounded by $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, water molecules and 18-crown-6
ethers, forming hydrogen bonds between them. Decavanadate $-\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ layers are separated by layers formed by 18-crown-6 molecules. These layers are further linked to each other by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as shown in Fig. 1. All of the O atoms in the polyanion except $\mathrm{O} h 1, \mathrm{O} b 6, \mathrm{O} b 8, \mathrm{O} t 12$ and $\mathrm{O} t 14$ form strong $\mathrm{O}_{\text {water }} \cdots \mathrm{O}_{\text {polyanion }}$ hydrogen bonds with the coordinated water of $\left[\mathrm{Co}(\mathrm{II})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and uncoordinated water molecules. In total, the formula unit contains 28 water molecules, of which 18 are coordinated to the three Co^{2+} ions, forming octahedra. The remaining water molecules fill the space in the unit cell, forming a network of hydrogen bonds. $\mathrm{O} w 14$ and $\mathrm{O} w 15$ were refined by reducing their site occupancies to 0.5 , indicating one complete atom disordered over two sites within the structure. The distance $\mathrm{O} w 13 \cdots \mathrm{O} t 14^{\mathrm{ii}}$ [symmetry code: (ii) $-x, 1-y, 1-z$] is 3.080 (5) \AA, but no suitable hydrogen bonds could be confirmed, because H atom positions for $\mathrm{O} w 13$ could not be determined.

There are one and half crystallographically independent Co^{2+} ions in the asymmetric unit; Co 2 lies on an inversion center in the space group $P \overline{1}$. The Co^{2+} ions are surrounded by six coordinated water molecules in the form of an irregular octahedron, with distances in the range 2.062 (3) -2.125 (3) \AA. The probable $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond distances, less than $3.1 \AA$ in (I), involving water are given in Table 2.

Experimental

Pale blue-brown crystals of the title compound were obtained by concentration of a solution of a stoichiometric mixture of 18-crown-6 and $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$ (Lee et al., 2003).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot-$
$\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2167.26$
Triclinic, $P \overline{1}$
$a=12.285(4) \AA$
$b=13.924(3) \AA$
$c=11.120(3) \AA$
$\alpha=101.33(3)^{\circ}$
$\beta=92.63(2)^{\circ}$
$\gamma=84.26(2)^{\circ}$
$V=1855.1(9) \AA^{\circ}$

Data collection

Stoe Stadi-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.608, T_{\text {max }}=0.812$
8466 measured reflections
8466 independent reflections 6530 reflections with $I>2 \sigma(I)$

Refinement

[^0]Table 1
Selected geometric parameters (A).

V1-Oh1	2.292 (2)	V5-Oc2	1.997 (2)
V1-Ob4	2.110 (3)	V5-Oc3	2.001 (2)
$\mathrm{V} 1-\mathrm{O} b 6^{\mathrm{i}}$	1.803 (3)	V5-Ob7	1.822 (2)
V1-Ob7	1.868 (2)	V5-Ob8	1.848 (3)
$\mathrm{V} 1-\mathrm{Ob} 10^{\mathrm{i}}$	1.904 (2)	V5-Ot14	1.604 (3)
V1-Ot 11	1.609 (3)	O15-C1	1.425 (5)
$\mathrm{V} 2-\mathrm{O} h 1^{\mathrm{i}}$	2.154 (2)	O16-C2	1.425 (5)
V2-Oh1	2.062 (2)	O16-C3	1.437 (5)
$\mathrm{V} 2-\mathrm{O} 22$	1.944 (2)	O17-C4	1.421 (5)
$\mathrm{V} 2-\mathrm{Oc} 3{ }^{\mathrm{i}}$	1.923 (2)	O17-C5	1.429 (5)
V2-Ob4	1.668 (2)	O18-C6	1.423 (5)
V2-Ob5	1.723 (2)	O18-C7	1.422 (5)
V3-O $h 1^{\text {i }}$	2.365 (2)	O19-C8	1.429 (6)
V3-Ob5	2.002 (2)	O19-C9	1.420 (6)
V3-Ob6	1.876 (3)	O20-C10	1.429 (5)
V3-Ob $8^{\text {i }}$	1.823 (3)	O20-C11	1.437 (6)
V3-Ob 9	1.946 (2)	O15-C12	1.439 (5)
V3-Ot12	1.599 (3)	C1-C2	1.495 (6)
$\mathrm{V} 4-\mathrm{O} h 1^{\mathrm{i}}$	2.246 (2)	C3-C4	1.497 (7)
$\mathrm{V} 4-\mathrm{O} c 2$	2.008 (2)	C5-C6	1.500 (6)
$\mathrm{V} 4-\mathrm{O} c 3$	2.030 (2)	C7-C8	1.491 (7)
V4-Ob 9	1.817 (2)	C9-C10	1.504 (8)
V4-Ob10	1.833 (2)	C11-C12	1.501 (6)
V4-Ot13	1.611 (2)	$\mathrm{O} w 13-\mathrm{O} t 14^{\mathrm{ii}}$	3.080 (5)
V5-Oh1	2.273 (2)		

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot A$
$\mathrm{O} w 1-\mathrm{H} 21 a \cdots \mathrm{O} 18$	0.84	1.94	2.764 (4)	165
$\mathrm{O} w 1-\mathrm{H} 21 b \cdots \mathrm{O} b 6^{\mathrm{iii}}$	0.93	1.86	2.786 (4)	172
$\mathrm{O} w 1-\mathrm{H} 21 a \cdots \mathrm{O} w 5$	0.84	2.83	2.912 (4)	87
$\mathrm{O} w 2-\mathrm{H} 22 b \cdots \mathrm{O} b 10^{\text {iii }}$	0.88	1.86	2.719 (4)	167
$\mathrm{O} w 2-\mathrm{H} 22 a \cdot \cdots \mathrm{O} b 10^{\mathrm{i}}$	0.94	1.88	2.817 (4)	179
$\mathrm{O} w 3-\mathrm{H} 23 a \cdots \mathrm{O} c 3^{\mathrm{i}}$	0.79	2.04	2.813 (4)	165
$\mathrm{O} w 3-\mathrm{H} 23 b \cdots \mathrm{O} 17$	0.85	2.06	2.853 (4)	157
$\mathrm{O} w 4-\mathrm{H} 24 b \cdots \mathrm{O} b 9^{\text {iii }}$	0.75	1.98	2.727 (4)	173
$\mathrm{O} w 4-\mathrm{H} 24 a \cdots \mathrm{O} w 14^{\mathrm{iii}}$	0.90	1.93	2.747 (8)	150
$\mathrm{O} w 5-\mathrm{H} 25 a \cdots \mathrm{O} 20$	0.83	1.95	2.771 (4)	176
Ow5-H25a...O15	0.83	2.73	3.002 (4)	101
$\mathrm{O} w 6-\mathrm{H} 26 b \cdots \mathrm{O} w 11$	0.87	1.96	2.788 (5)	159
Ow6-H26a.. Ow	0.79	2.17	2.868 (4)	148
Ow6-H26a...Ob4	0.79	2.67	3.048 (4)	112
$\mathrm{O} w 7-\mathrm{H} 27 a \cdots \mathrm{O} c 2^{\mathrm{ii}}$	0.75	2.02	2.766 (4)	172
$\mathrm{O} w 7-\mathrm{H} 27 b \cdots \mathrm{O} w 10$	0.94	2.00	2.785 (5)	140
$\mathrm{O} w 7-\mathrm{H} 27 b \cdots \mathrm{O} w 9$	0.94	2.73	3.028 (4)	99
$\mathrm{O} w 7-\mathrm{H} 27 b \cdots \mathrm{O} w 9$	0.94	2.73	3.028 (4)	99
$\mathrm{O} w 8-\mathrm{H} 28 a \cdots \mathrm{O} 55$	1.03	1.73	2.686 (4)	153
Ow8-H28b . . O 15	0.88	1.94	2.807 (4)	168
$\mathrm{O} w 9-\mathrm{H} 29 a \cdots \mathrm{O} w 15$	0.96	1.74	2.557 (9)	140
$\mathrm{O} w 9-\mathrm{H} 29 a \cdot \cdots \mathrm{O} w 14$	0.96	2.48	2.917 (9)	108
$\mathrm{O} w 9-\mathrm{H} 29 b \cdots \mathrm{O} b 9$	0.95	1.94	2.780 (4)	145
$\mathrm{O} w 10-\mathrm{H} 30 a \cdots \mathrm{O} b 7^{\mathrm{ii}}$	0.83	1.94	2.757 (4)	169
$\mathrm{O} w 10-\mathrm{H} 30 b \cdots \mathrm{O} w 12^{\text {iv }}$	0.88	1.98	2.850 (5)	170
$\mathrm{O} w 11-\mathrm{H} 31 a \cdots \mathrm{O} w 15^{\mathrm{ii}}$	0.88	2.64	2.75 (1)	88
$\mathrm{O} w 11-\mathrm{H} 31 a \cdots \mathrm{O} w 14^{\mathrm{ii}}$	0.88	2.22	2.744 (9)	118
$\mathrm{O} w 11-\mathrm{H} 31 b \cdots \mathrm{O} t 11$	0.83	2.03	2.790 (5)	151
$\mathrm{O} w 12-\mathrm{H} 32 b \cdots \mathrm{O} 19$	0.81	2.11	2.895 (5)	163
Ow $12-\mathrm{H} 32 a \cdots \mathrm{O} 16$	0.82	2.20	2.999 (5)	165

During the refinement process, sensible displacement parameters of $\mathrm{O} w 14$ and $\mathrm{O} w 15$ were obtained by reducing the occupancy of these atoms to $0.5(\mathrm{O} \cdots \mathrm{O}$ distance is $1.40 \AA)$. The H atoms of the $\mathrm{O} w 13$, $\mathrm{O} w 14$ and $\mathrm{O} w 15$ water molecules could not be located from electron-
density maps. These H atoms were not included in the caculations (although they are included in the empirical formula). All H atoms bonded to C atoms were included in the structure-factor calculation at idealized positions, and were allowed to ride on their parent atoms with relative isotropic displacement parameters $\left\{U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$. The H atoms of the water atoms (except for those of $\mathrm{O} w 13$, $\mathrm{O} w 14$ and $\mathrm{O} w 15$) were located in difference electron-density maps, refined using a riding model with the application of loose $\mathrm{O}-\mathrm{H}$ bond-length restraints, and also refined isotropically $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.5 U_{\text {eq }}(\mathrm{O})\right]$. This treatment gave $\mathrm{O}-\mathrm{H}$ distances ranging from 0.75 to 1.03 A . Anisotropic displacement parameters were used for all non-H atoms. The highest peak in the difference map is $1.09 \AA$ from $\mathrm{O} w 14$, and the deepest hole is $0.35 \AA$ from H29a.

Data collection: Stadi4 (Stoe \& Cie, 1996); cell refinement: Stadi4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

This work was supported by the Nul Won Culture Foundation in 1998.

References

Avtamonova, N. V., Trunov, V. K. \& Makarevich, L. G. (1990). Izv. Akad. Nauk SSSR Neorg. Mater. 26, 350-356.
Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.
Crans, D. C., Mahroof-Tahir, M., Anderson, O. P. \& Miller, M. M. (1994). Inorg. Chem. 33, 5586-5590.
Durif, A., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1980). Acta Cryst. B36, 680-682.

Eglmeier, C., Range, K.-I., Kleynhans, A. \& Heyns, A. M. (1993). S. Afr. J. Chem. 46, 7-13.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fratzky, D., Schneider, M., Rabe, S. \& Meisel, M. (2000). Acta Cryst. C56, 740741.

Higami, T., Hashimoto, M. \& Okeya, S. (2002). Acta Cryst. C58, i144-i146.
Kamenar, B., Cindrić, M. \& Strukan, N. (1996). Acta Cryst. C52, 1338-1341.
Lee, U., Jung, Y. H. \& Joo, H. C. (2003). Acta Cryst. E59, i72-i74.
Nagano, O., Lee, U., Ichida. H. \& Sasaki. Y. (1990). Bull. Korean Chem. Soc. 11, 15-19.
Naruke, H., Yamase, T. \& Kaneko, M. (1999). Bull. Chem. Soc. Jpn, 72, 17751779.

Nieto, J. M., Salagre, P., Medina, F., Sueritas, J. E. \& Solans, X. (1993). Acta Cryst. C49, 1879-1881.
Nowogrocki, G., Baudrin, E., Denis, S. \& Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011-1026.
Peng, X. H., Li, Y. Z., Cai, L. X., Wang, L. F. \& Wu J. G. (2002). Acta Cryst. E58, i111-i113.
Rigotti, G., Rivero, B. E. \& Castellano, E. E. (1987). Acta Cryst. C43, 197-201.
Rivero, B. E., Punte, G. \& Rigotti, G. (1985). Acta Cryst. C41, 817-820.
Rivero, B. E., Rigotti, G. Punte, G. \& Navaza, A. (1984). Acta Cryst. C40, 715718.

Saf'yanov, Yu. N. \& Belov, N. V. (1976). Dokl. Akad. Nauk SSSR, 227, 11121115.

Saf'yanov, Yu. N., Kuz'Min, E. A. \& Belov, N. V. (1978). Dokl. Akad. Nauk SSSR, 242, 603-605.
Sheldrick, G. M. (1990). Acta Cryst. A46. 467-473.
Sheldrick, G. M. (1997). SHELXL97-2. University of Göttingen, Germany.
Stoe \& Cie (1996). Stadi4, X-RED and X-SHAPE. Stoe \& Cie GmbH, Hilpertstraße 10, D64295 Darmstadt, Germany.
Strukan, N., Cindrić, M. \& Kamenar, B. (1999). Acta Cryst. C55, 291-293.
Sun, Z. G., Long, L. S., Ren, Y. P., Huang, R. B., Zheng, L. S. \& Ng, S. W. (2002). Acta Cryst. E58, i34-i36.

Swallow, A. G., Ahmed, F. R. \& Barnes, W. H. (1966). Acta Cryst. 21, 397-405.
You, W., Wang, E., He, Q., Xu, L., Xing, Y. \& Jia, H. (2000). J. Mol. Struct. 524, 133-139.
You, W., Wang, E., Xu, Y., Li, Y., Xu, L. \& Hu, C. (2001). Inorg. Chem. 40, 5468-5471.
You, W., Wang, E., Xu, L., Zhu, Z. \& Gu, Y. (2002). J. Mol. Struct. 605, 41-49.
You, W., Wang, E., Zhang, H., Xu, L. \& Wang, Y. (2000). J. Mol. Struct. 554, 141-147.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
 $w R\left(F^{2}\right)=0.108$
 $S=1.08$
 8466 reflections
 484 parameters
 H atoms treated by a mixture of independent and constrained refinement

